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Polarimetric data-based model for tissue 
recognition: supplemental document 
1. Complete image Mueller polarimeter description 
The current study is performed by measuring the experimental Mueller matrices from different 
chicken samples at three different illumination wavelengths covering the visible range: 625 nm, 
530 nm and 470 nm. To do so, a complete image Mueller polarimeter [1-4] is used (Fig. S1) 
Particularly, it is based on Parallel Aligned Liquid Crystals (PA-LC) retarders and consists of 
two compact and mobile arms. The first one, the Polarization State Generator (PSG), allows us 
to generate any fully polarized state so we can illuminate the sample with controlled polarized 
light. It is composed by a linear polarizer oriented at 0º followed by two PA-LC at 45º and 0º, 
respectively, with respect to the laboratory vertical. We illuminate the sample at 56º with respect 
to the vertical so the second arm, called Polarization State Analyzer (PSA) and placed in the 
vertical position avoids direct reflections and collects the scattered light. PSA is composed of 
the same elements as PSG but placed in the inverse order to finally capture, by means of a CCD 
camera, the sample’s intensity image. With this architecture, the polarimeter is capable to 
analyze and determine the polarimetric response of the sample.  

 
Fig. S1. a) 3D representation of the complete image Mueller polarimeter used in this study, b) 

3D representation of the arrangement of the optical components in the PSG and the PSA. 

In the employed set-up, the illumination is performed by using a four-wavelength high-power 
Thorlabs LED source (LED4D211, operated by DC4104 drivers distributed by Thorlabs), 
complemented with 10 nm dielectric bandwidth filters for green (530 nm) and blue (470 nm) 
wavelengths (Thorlabs FB530-10 and FB470-10, respectively). In counterpart, imaging is 
performed by means of a TECHSPEC® high-resolution objective (distributed by Edmund 
Optics) with a 35 mm focal length so a resolution of 22 µm is achieved followed by an Allied 
Vision Manta G-504B CCD camera.  

To build the experimental Mueller matrix, at least 16 independent measurements are 
required (related with different Stokes generation, PSG, and detection, PSA, configurations). In 
the current study, we use 6 illumination states of polarization (generators) and 6 detection 
analyzers instead, so taking 36 images, to minimize the measurement noise of each sample’s 
Mueller matrix. A complete Mueller measurement waiting time lasts ~ 3.6 seconds: liquid 
crystal molecules rearrange the orientation process from one polarization state to the following 
one lasts approx. 100 ms.  

 

 



2. Histological process of samples 
For histological countercheck of the images, samples were obtained from regions analogous to 
the ones submitted to polarimetric analysis (i.e., striated muscle, tendon, myotendinous junction 
and diaphyseal bone). After extraction, they were immersion-fixed in 4% formaldehyde 
overnight and dehydrated through a protocol including immersion in: 70% Ethanol (30’), 80% 
Ethanol (30’), 90% ethanol (30’), 95% ethanol (30’), two successive immersions in 100% 
Ethanol (60’ each) and xylene (60’ each). After dehydration, they were embedded and in a 
paraffin wax. After cooling they were sliced in 5µm-thick sections through microtomy. Sections 
were mounted in crystal slides which were stained after deparaffination. Deparaffination 
protocol includes a 24-hour immersion in xylene and brief, successive rinses in 96% ethanol, 
90% ethanol, 80% ethanol, 70% ethanol and distilled water. Two different histological staining-
techniques were used. 

a) Hematoxylin-eosin is the standard histological technique for diagnostic microscopy. It 
involves the combined use of an oxidized cationic colorant (hematoxylin) that highlights nucleic 
acid-rich regions of the tissue in purple and an anionic colorant (eosin) that stains in a 
characteristic pink color protein-rich area of the tissue, e.g. collagen in pale pink and muscle in 
dark pink. Sections were immersed in a bath containing Harris hematoxylin solution for 10’ 
(Merck ® H9627), differentiated in 1% acid alcohol solution (5 ml of 37% HCl in 495 ml of 
70% ethanol) for around 20”, blued in a bluing solution for 20” (Sigma-Aldric ® S5134) and 
counterstained with Eosin Y for 1’ (Sigma-Aldric ® E4009). Brief rinses in tap water were 
performed between each step.  

b) Masson technique allows the differential staining of connective tissue. It includes 
Weigert’s hematoxylin (a variant of hematoxylin) for nuclei acid-rich regions, acid fuchsin as 
an acid dye for protein-rich cytoplasm, a combination of phosphotungstic and phosphomolybdic 
acids to remove the excess fuchsin from fibers and aniline blue to counterstain the fibers. 
Overall, it provides a blueish color to collagen-rich tissue and deep red color to muscle fibers, 
also allowing the identification of other kinds of tissue. Staining protocol includes a 5’ rinse in 
Weigert Hematoxylin (Merck® 115973), a 5’ incubation in acid fuchsin solution (Sigma-
Aldrich ® F8219), successive incubations (no longer than 3’) in a 20% solution of 
phosphotungstic-phosphomolybdic acid in ethanol (Sigma-Aldrich ® 319279) and a 5’ 
incubation in a 2.5% solution of aniline blue prepared in 2% acetic acid (Sigma-Aldric ® 
B8563). If necessary, a rapid rinse in 1% acetic was performed to remove the excess dye. Brief 
rinses in distilled water were performed between steps. 

After staining, samples were dehydrated in ethanol (5’ in ascending concentrations of 70%, 
80%, 90%, 96%, 100%) and xylene before being covered using Eukitt® as mounting media. 
After drying for 24 hours, sections were scanned (Zeiss AxioScan ®) and analyzed using a 
QuPath free software. Obtained images are presented in Figs. S2 and S3. 



 
Fig. S2: Histochemical stainings of muscle (A, B), tendon (C, D) and myotendinous junction (E, F). Bundles (1, 2, 6) 
of either contractile (A, B, E, F) or dense fibrous (collagen) tissue (C-F) are surrounded by sheets of lax connective 

tissue (collagen) concentrically organized as epimysium (**)/epitenon (**), perimysium/peritenon (5) and 
endomysium/endotenon (6). In E, F a transverse section of the myotendinous junction is shown, where the Masson 
staining reveals the intermixed (*) fascicles of contractile fibers (discontinuous arrow in (F) and collagenous fibers 

(arrow in F)). Different fascicles of tendinous collagen are highlighted in red, green and gold (C). 



 
Fig. S3: Transversal section of striated muscle (A) showing bundles of contractile fibers (red colored, 1) surrounded 
by endomysium (2, compare to 3, 4) and included in a single fascicle surrounded by collagen (perimysium, 5). This 
structure is analogous to the tendinous structure (B), where the collagen fibers (3) are densely packed into a sheet of 

peritenon (4). Longitudinal section of cortical bone (C), showing bony matrix (6) and lacunae (7) containing 
osteocytes, vessels and collagen that are heavily artifacted due to pre-treatment (8); Transverse section through the 

diaphysis of a long bone (D), where collagenic periosteum (9), cortical bone (10) and rests of trabecular bone (11) are 
arranged in a concentrically layers. Note the regular arrangement of lacunae, both in longitudinal and transverse 

sections. Color (from reddish to purple) depends on the amount of mineral deposits in any given region of the bone. 

 

3. Experimental Mueller matrices 
The experimental typical Mueller matrices (MMs) obtained for each type of tissue (muscle, 
tendon, myotendinous junction and bone) measured at 625 nm illumination wavelength are 
shown below followed by the respective parameters (PΔ, P1, P2, P3, P, R, D, δ and Ψ) resulting 
from matrix decomposition. The obtained images correspond to a region of interest (ROI) of 
512 x 512 pixels which corresponds to an area of 1.1 x 1.1 cm2.  

Particularly, typical MM of muscle tissue and the respective polarimetric parameters are 
shown in Figs. S4 and S5, respectively. MMs of tendon, myotendinous junction and bone tissue 
are presented in Figs. S6 and S7, Figs. S8 and S9, and Figs. S10 and S11, respectively.  

 



 
Fig. S4. Experimental Mueller matrix image of a sample of muscle tissue. 

 

 
Fig. S5. Images of the polarimetric parameters PΔ, P1, P2, P3, P, R, D, δ and Ψ from a sample of muscle tissue. 



 
Fig. S6. Experimental Mueller matrix image of a sample of tendon tissue. 

 
Fig. S7. Images of the polarimetric parameters PΔ, P1, P2, P3, P, R, D, δ and Ψ from a sample of tendon tissue. 

 



 
Fig. S8. Experimental Mueller matrix image of a sample of myotendinous tissue. 

 
Fig. S9. Images of the polarimetric parameters PΔ, P1, P2, P3, P, R, D, δ and Ψ from a sample of myotendinous tissue. 

 



 
Fig. S10. Experimental Mueller matrix image of a sample of bone tissue. 

 
Fig. S11. Images of the polarimetric parameters PΔ, P1, P2, P3, P, R, D, δ and Ψ  from a sample of bone tissue. 



 

4. Statistical analysis 
For the correct manipulation of data to construct a predictive model it is mandatory to know 
which are the distributions profile (parametric or not) and, depending on the results, apply the 
corresponding statistical tests to formulate the tissue-discrimination functions. In this way, we 
perform an exploratory univariant analysis (to analyze the distribution profile) and a posterior 
factor analysis with principal components extraction for the dichotomic predictive models’ 
construction. The additional material for the above-mentioned analysis is described in the 
following sections. 

4.1 Exploratory univariant analysis 

To ensure the correct statistical manipulation of polarimetric data distributions classified by 
type-of-tissue variable groups, it is necessary to previously perform an exploratory univariant 
analysis based on the study of the graphical differences between sample’s distributions, as well 
as the central tendency, data dispersion, asymmetry and outlier’s identification by means of 
Boxplot [5,6].  

Recalling the P2 purity index (measured at 625 nm illumination) presented in Fig. 2, in this 
section we provide, in complement, the results in the format of Boxplots corresponding to the 
data acquired at 530 nm and 470 nm in Figs. S12 and S13, respectively.  

 
Fig. S12. Boxplot of P2 index for all tissues measured at 470 nm illumination channel. Red-

dashed line visually represents the potential of the metric to discriminate muscle among 
remaining tissue types: the median of the muscle box does not fit within the other tissues’ 
boxes. Green-dashed line visually represents P2 tendon discrimination capability. Boxplot 

points out the low quantity of outliers on data distributions (which can be extrapolated to the 
remaining metrics): mild and extreme values are represented by circles and stars, respectively. 

The exposed P2 data distributions for all type of tissues measured at 530 nm wavelength (Fig. 
S12) clearly shows the same small number of outliers’ behavior as 625 nm (manuscript Fig. 2) 
and 470 nm (Fig. S13). What is more, asymmetric tendency (position of the median is not in 
the middle of boxes) is common for all wavelengths. Moreover, tissue discrimination capability 
of P2 is pointed out (median line does not fit within the remaining boxes): at 530 nm illumination 
(Fig. S12), the metric shows muscle discriminative potential (see dashed red line) but also 
tendon differentiation from myotendinous junction and bone (see dashed green line). At 470 nm 



illumination conditions (Fig. S13), P2 keeps differentiating muscle (see dashed red line) but also 
works well as a myotendinous junction discriminator (see dashed blue line).  
 

 
Fig. S13. Boxplot of P2 index for all tissues measured at 470 nm illumination channel. Red-

dashed line visually represents the potential of the metric to discriminate muscle among 
remaining tissue types: the median of the muscle box does not fit within the other tissues’ 

boxes. Blue-dashed line visually represents P2 Myotendinous junction discrimination 
capability. Boxplot points out the low quantity of outliers on data distributions (which can be 
extrapolated to the remaining metrics): mild and extreme values are represented by circles and 

stars, respectively. 

For the Kruskal-Wallis [7,8] homogeneity multiple contrast analysis, the output significance of 
the 27 measured polarimetric indicators for each pair of tissue discriminative power is presented 
in Table S1. Particularly, we assume, as null hypothesis, that the data comes from samples with 
the same statistical distribution. By setting a significance level, α, of 0.05, Kruskal-Wallis 
outcomes reject, in most of the cases, the mentioned hypothesis: p-values lower than the 
significance level show the discriminatory potential of the polarimetric indicator between the 
corresponding pair of tissues. Note that, because the SPSS software found no significant 
difference when sorting by pair of tissues, only one value is output for optical rotation, Ψ. 

 
Table S1. Significance (p-value, rounded to three digits) of the M-metrics pair-of-tissue discrimination. 

  Muscle – 
Tendon 

Muscle – 
Myo. 

Muscle – 
Bone 

Tendon – 
Myo. 

Tendon – 
Bone 

Myo. – 
Bone 

62
5 

nm
 

PΔ 0.000 0.000 0.000 0.559 0.331 0.599 

P1 0.000 0.000 0.000 0.210 0.274 0.948 

P2 0.003 0.000 0.000 0.741 0.181 0.254 

P3 0.000 0.000 0.000 0.723 0.714 0.936 

P 0.427 0.000 0.000 0.036 0.000 0.004 

R 0.378 0.000 0.000 0.002 0.000 0.223 



D 0.070 0.002 0.000 0.149 0.008 0.135 

δ 0.374 0.005 0.000 0.062 0.004 0.614 

Ψ 0.110 

53
0 

nm
 

PΔ 0.351 0.000 0.000 0.000 0.000 0.730 

P1 0.594 0.000 0.000 0.000 0.000 0.389 

P2 0.044 0.000 0.000 0.000 0.003 0.982 

P3 0.995 0.000 0.000 0.000 0.000 0.268 

P 0.054 0.001 0.000 0.062 0.001 0.436 

R 0.001 0.000 0.000 0.358 0.210 0.615 

D 0.695 0.017 0.010 0.060 0.031 0.534 

δ 0.008 0.000 0.000 0.283 0.042 0.247 

Ψ 0.101 

47
0 

nm
 

PΔ 0.480 0.000 0.000 0.000 0.000 0.877 

P1 0.253 0.000 0.000 0.000 0.000 0.436 

P2 0.930 0.000 0.000 0.000 0.000 0.885 

P3 0.340 0.000 0.000 0.000 0.000 0.508 

P 0.010 0.020 0.000 0.835 0.001 0.015 

R 0.024 0.002 0.002 0.358 0.211 0.616 

D 0.383 0.021 0.000 0.181 0.005 0.079 

δ 0.009 0.004 0.009 0.749 0.634 0.830 

Ψ 0.299 

4.2 Principal Components extraction and component score coefficient matrix 

Linked with scree plot [9], Table S2 exposes the eigenvalues of the chosen 10 principal 
components [10,11], together with the data variance and the cumulative variance (both in %). 
Note that C1 carries the highest amount of explained variance. This behavior will be reflected 
in predictive model construction as this component is going to have a strong influence. Lower 
amounts of variance are taken by the remaining components. However, it is important to remark 
that when considering the 10 components as a whole, we achieve a 92% of explained variance.  

Table S2. Percentage of variance explained.  

 Extraction Sums of Squared Loadings 

Total % of Variance Cumulative 

C1 11.195 41.462 41.462 

C2 3.783 14.012 55.473 

C3 2.265 8.391 63.864 

C4 2.008 7.436 71.300 



C5 1.786 6.616 77.915 

C6 1.026 3.799 81.714 

C7 0.890 3.298 85.012 

C8 0.762 2.824 87.836 

C9 0.634 2.350 90.186 

C10 0.509 1.885 92.071 

The 27-dimension metrics space is reduced to a new 10-dimension principal components space. 
In this way, the original polarimetric information is encoded on the principal components: we 
can write each component as a linear combination of the 27 different polarimetric indicators 
weighed by some constants provided by columns of the so-called component score coefficient 
matrix, shown in Table S3.  

 
Table S3. Component score coefficient matrix of the 10 first principal components. 

 
Principal component 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

62
5 

nm
 

PΔ 0.068 -0.083 0.219 -0.061 0.113 0.005 -0.079 -0.050 -0.066 -0.204 

P1 0.066 -0.020 0.154 -0.126 0.205 -0.024 -0.128 0.090 -0.129 -0.178 

P2 0.063 -0.103 0.214 -0.017 0.053 0.013 -0.015 -0.162 -0.035 -0.241 

P3 0.063 -0.090 0.230 -0.060 0.102 0.022 -0.088 -0.026 -0.053 -0.146 

P 0.013 -0.092 0.097 -0.205 0.168 0.441 0.442 0.329 0.252 0.217 

R 0.036 0.154 0.138 -0.032 0.117 -0.329 -0.074 -0.018 0.484 0.636 

D 0.028 -0.107 0.218 0.232 -0.213 -0.082 0.032 -0.252 0.099 -0.077 

δ 0.034 0.160 0.139 -0.098 0.018 -0.114 -0.014 0.402 -0.505 0.532 

Ψ -0.011 0.037 0.008 0.280 0.196 -0.313 0.434 0.472 0.120 -0.622 

53
0 

nm
 

PΔ 0.085 -0.003 -0.105 0.008 0.017 -0.096 -0.044 -0.076 -0.058 0.018 

P1 0.082 0.027 -0.069 0.005 0.045 -0.127 0.020 -0.029 -0.011 -0.044 

P2 0.082 -0.021 -0.095 0.019 -0.023 -0.077 -0.072 -0.121 0.066 -0.002 

P3 0.078 -0.009 -0.132 -0.010 0.035 -0.085 -0.062 -0.094 -0.201 0.083 

P 0.068 0.008 -0.094 -0.016 0.066 -0.004 0.434 -0.315 -0.235 0.111 

R 0.038 0.180 0.105 0.037 -0.038 -0.154 0.250 -0.400 0.294 -0.022 



D 0.043 -0.118 0.089 0.196 -0.245 0.034 0.036 0.239 0.073 0.484 

δ 0.029 0.179 0.111 0.038 -0.156 0.038 0.294 -0.065 -0.553 -0.164 

Ψ -0.001 0.060 -0.005 0.346 0.298 0.145 -0.064 0.098 0.008 0.251 

47
0 

nm
 

PΔ 0.083 0.008 -0.127 0.005 -0.011 0.027 -0.121 0.169 0.079 -0.117 

P1 0.080 0.035 -0.101 0.005 0.005 0.007 -0.143 0.287 0.111 -0.099 

P2 0.081 -0.010 -0.136 0.007 -0.033 0.051 -0.106 0.082 0.097 -0.152 

P3 0.080 0.000 -0.126 -0.002 -0.003 0.017 -0.113 0.124 0.030 -0.065 

P 0.057 -0.027 -0.143 -0.026 0.000 0.244 0.459 -0.190 0.108 0.216 

R 0.033 0.181 0.084 -0.034 -0.119 0.283 -0.083 0.023 0.616 -0.241 

D 0.049 -0.122 0.036 0.184 -0.239 0.002 0.095 0.258 0.005 0.254 

δ 0.025 0.179 0.062 0.012 -0.233 0.356 -0.087 0.196 -0.149 -0.308 

Ψ 0.006 0.054 0.017 0.303 0.236 0.444 -0.235 -0.285 -0.176 0.151 

5. Predictive model construction 

To test the goodness-of-fit of the four constructed predictive models (muscle, tendon, 
myotendinous junction and bone), we rely on the Hosmer-Lemeshow [12] significance and the 
R2 of Nagelkerke [13] measure. Outputs are presented in Table S4.  

Table S4. Hosmer-Lemeshow significance (p-value) and R2 of Nagelkerke, of each predictive model. 
 Muscle Tendon Myotendinous junction Bone 

Hosmer-Lemeshow Sig. 0.192 0.980 0.530 0.956 

R2 of Nagelkerke 0.640 0.690 0.282 0.481 

Because the obtained Hosmer-Lemeshow [12] significance values are larger than the threshold 
(p-value > 0.05), we accept the null hypothesis: all the four predictive models fit the data. 
Regarding to the of R2 of Nagelkerke [13] values, the larger the value the better the fit, being 1 
the maxim value (optimal fit). However, generally speaking, R2 of Nagelkerke values larger 
than 0.2 are acceptable, and larger than 0.6 can be associated to excellent fits. In this vein, 
obtained results show a nice data fit for the muscle (0.64), tendon (0.69) and bone (0.48) 
regressions. In turn, the myotendinous junction data regression lead to an acceptable result 
(0.28), but clearly worst than those obtained for the other tissues. This result is in agreement 
with the models analysis provided in the main manuscript, where the worst results in terms of 
sensitivity and specificity are obtained for the myotendinous junction model. 

6. Tissue recognition through binary logistic model 
For a complementary visual analysis, the output of the probabilistic model for the particular 
cases of an arbitrary bone and an arbitrary myotendinous junction tissue are provided in Figs. 



S14 and S15, respectively. Particularly, Fig. S14 shows the intensity image M00 (Fig. S14(a)) 
and the four probability function images (muscle, tendon, myotendinous junction and bone 
recognition (Figs. S14(b-e), respectively) for a bone sample. Recall that sample holder 
polarimetric information is not characterized: pixel values for background acquired data have 
no physical meaning. The obtained probability function images show how the bone model 
successfully recognize the bone tissue pixels (Fig. S14(e)), clearly showing, in addition, the two 
longitudinal bone edges (marked with yellow and red dotted lines) not visible in intensity image 
in Fig. S14(a). When analyzing the probability distribution of the three remaining functions, a 
good discriminating potential is demonstrated, specially for the tendon model in Fig. S14(c), 
which clearly does not recognize the tissue as tendon. On the other hand, muscle and 
myotendinous junction probability images (Figs. S14(b) and S14(d)) show, with low probability 
values, an overall discard of analyzed tissue to be muscle or myotendinous junction tissues, 
respectively. As in previous discussion, worst predictive results are obtained for the 
myotendinous junction model (Fig. S14(d)).   

   
Fig. S14. Intensity image M00 (a) and probability function of muscle (b), tendon (c), 

myotendinous junction (d) and bone (e) for chicken bone measurements. The gray level bars, 
placed to the right of the corresponding probability function images, defines whether the 

probability of the pixel to be recognized as a particular tissue is one (white) or zero (black). 
Yellow and red dotted lines highlight the position of the edges of the bone.  

Analogously, Fig. S15 shows the intensity image M00 (Fig. S15(a)) and the four probability 
function images (muscle, tendon, myotendinous junction and bone recognition (Figs. S15(b-e), 
respectively) for a particular myotendinous junction sample. The obtained probability images 
when measuring the myotendinous junction sample demonstrate how all the models discard the 
analyzed myotendinous junction tissue to be muscle (Fig. S15(b)), tendon (Fig. S15(c)) or bone 
(Fig. S15(e)), except the actual myotendinous junction model (Fig. S15(d)), who succefully 
identify the tissue as myotendinous junction one. Therefore, the overall recognition of the tissue 
is correct, as the above-stated results are consistent in most image pixels. Only few individual 
pixels throughout the images show deviation from the general tendency, but still they could be 
properly categorized depending on the selected categorization probability threshold selected.  



 

   
Figure S15. Intensity image M00 (a) and probability function of muscle (b), tendon (c), 

myotendinous junction (d) and bone (e) for chicken myotendinous junction measurements. The 
gray level bars, placed to the right of the corresponding probability function images, defines 

whether the probability of the pixel to be recognized as a particular tissue is one (white) or zero 
(black).  
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